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Efficient and Accurate Modeling of Planar
Anisotropic Microwave Structures by
the Method of Lines

Reinhold PreglaFellow, IEEE

Abstract—A new algorithm for the analysis of planar microwave
structures with anisotropic substrates is proposed and substan-
tiated. This algorithm is based on generalized transmission-line
(GTL) equations, which are developed here for numerical algo-
rithms. For the purpose of analysis, two different modal matrices
for the discretized transverse electric and magnetic fields are cal-
culated. Furthermore, impedance/admittance transformation for-
mulas are developed with the help of the GTL equations for longi-
tudinal sections and general junctions. Crossed discretization lines @) () ©
are used in the latter case. The materials are assumed to be biaxial Fig. 1. Planar microwave circuits. (a) Band-stop filter. (b) Coplanar-line filter.
or specific anisotropic. Special algorithms are developed for junc- (c) Meander line.
tions consisting of more than two waveguides in the cross section
and for bends. The proposed algorithm is verified by numerical re-
sults.

discretization is in the propagation direction, the algorithm is
not suitable and adequate for devices consisting of many con-
catenated waveguide sections.

In general, microwave circuits can be described as concate-
nations of longitudinally homogeneous waveguide segments
and junction regions. This paper aims at presenting an analysis
. INTRODUCTION algorithm adequate for the above-mentioned structures on

NLY IN special cases do microwave and millimeter-wavanisotropic §ubstrates. To describg the field p_rop.aga'Fion along

devices such as integrated circuits have a simple forfh® Waveguide segments, generalized transmission-line (GTL)
Examples of complex planar circuits are shown in Fig. 1. THRAuations [3] for the transverse electric and magnetic fields
first one is a microstrip band-stop filter. This special structu@'® developed here in a special form best suited for numerical
contains various propagation paths from input to output afdporithms. These equations are analogous to the well-known
allows the formation of phase or group delay Characteristié@nsmiSSiO”"ine eqqations for coupled transmission lines in
The second shows a bandpass filter in coplanar-line technoldgjomogeneous media [4].
featuring big differences in the dimensions. The distances ofThe GTL equations allow the normalization of the fields
the two parts of the inner line are very small compared to thky using two modal matrices for the transverse electric and
length. The proposed algorithm is very suitable for this strufagnetic fields. Generally, the analysis is based on impedance/
ture because the longitudinal direction is determined analy@idmittance transformations from the loads to the input. These
cally, whereas the cross section can be described optimallytignsformation equations are obtained with the help of the GTL
a nonequidistant discretization scheme. As a last example, fglations. The fields can be calculated in opposite direction
sketch of a microstrip meander line is shown. Meander lines &¥@ting at the input and proceeding to the load. This is a
especially useful as group delay equalizers or as delay elemeRttmerically stable algorithm. The relation between the fields
Here also are big differences in the dimensions. Furthermo?é,the ends of the longitudinal sections is described by a trans-
many lines are coupled with each other. In general, not only fmation of relevant impedance/admittance matrices. At the
the metallizations have a complex form, but also the substrafé¥icatenations of different waveguide sections, the matching
may be multilayered and the materials may have biaxial or sggocess of the fields is also performed by an impedance/admit-
cific anisotropic properties. tance transformation. Waveguide junctions are analyzed with

The analysis of microstrip discontinuities with bianisotropi@rOSSEd discretization lines. The relations between the fields

substrates using the method of lines (MoL) [1], with discretizat the ports are described by open-circuit matrix parameters

tion lines perpendicular to the surface, is given in [2]. Since tHghort-circuit matrix parameters are also useful in some cases).
Therefore, it is possible to transform again the load impedances

to the input port to which the source is connected.

Index Terms—Anisotropic materials, generalized transmission-
line equations, impedance/admittance transformation, method of
lines, microstrip junctions.
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conformal antennas [7]. Eigenmode solvers for double-layeréeld componentsd. and E. using the remaining equations of
anisotropic substrates have been reported in [8] and for mulaw of induction and Ampere’s law, respectively, as follows:
layered anisotropic waveguides by the author in [9]-[11].

The proposed algorithm will be substantiated by numerical JpezHy = [-Ds DQJE
results. je:2E. =[Dy  Dz]|H. (")
1. BASIC THEORY Combining (4), we obtain
In this section, we derive the GTL equations that are analo- d? £, " E E1TE,] _ o ®)
gous to the well-known equations for coupled multiconductor 072 | b, QF QL |E.| |0
transmission lines in inhomogeneous media [4] as follows: ] )
where[QF] = [Ry][Rg]. Alternatively, we can write a wave
i[U] — WLl equation forH. The relation between these two wave equations
a2 T will be discussed later.
d .
@m = —jlwCllU]. @ ¢ Boundary Conditions

These equations are solved by calculating modal matrices [4]yVewiIIdemonstrate the fulfilment of boundary conditions for
which we would also like to determine here. the case of electric walls. The case of magnetic walls will be dual.

At electric walls, the tangential electric-field components must
A. Material Properties be zero. Therefore, we have to first fulfill the conditialls = 0
andE, = 0 ata metallic wally = const andz = coust,
?éspectively. This means that [Rg] for (4a), the differential
(difference) operator®; and.Djy on the right-hand sides in the
submatrices have to be chosen for Dirchlet boundary conditions.

For the formulation of GTL equations, the material param
ters are assumed of the following form:

Vacac Vac' 0 . . .
S—luv. " 0 withy =corp.  (2) The difference operators on the left-hand sides in the subma-
' o o vl ' trices have to be chosen for Neumann boundary conditions. Now,

0F,/9zZ = 0anddE, = 0 are also fulfilled at the same walls,
The propagation takes place in thelirection. The device under respectively. Therefore, by rewriting (4b), atthese walls we have
study is divided into homogeneous sections in the direction of
propagation. Hence, the material parameters in the cross seg;Ey =0
tions are functions af andy only. :

B. GTL Equations 9)

GTL equations can be derived in general orthogonal coordiﬂEx -0
nate system [7]. Here, we will describe the Cartesian case. Usingg

the abbreviations = D2eZ} (D;Hy - D;Hw) + (uywHw + uyyHy).
E=[E,E)] (10)
A=[-H,H,) (3) Thefirstterm in brackets on the right-hand sides of (9) and (10)
is proportional toE. [see (7b)], which has to be zero at the
we obtain induction of the expressions metallic walls. Therefore, the differential (difference) operators
5 on the left-hand sides of the brackd?§ and D7, respectively,
_H = —j[Rg|E have to be constructed for Dirichlet boundary condition. Ac-
0z cording to the discretization scheme, the differential (difference)
aiEA = —j[RH]fI (4) operatordy andD¢ inthe expressions of the first brackets have
9z the form for Neumann boundary condition. Since we have ful-
from Ampere’s law and the law with filled the conditionE. = 0, the terms in the second brackets

faaHo + piny H, and i, H, + 1, H, also will then be zero at

[Rg] = eyy + DaptDs ey — Dapis Dy 5) t_he correiponding_walls. Therefore_,we have fﬂlfilled the condi-
€xy — Dy Dz €np + Dyu Dy tions B, = 0 (B, = 0) at the wallz = const.(y = const.)
SinceH,, andH,, will be discretized at different points, we have
[Ru] = oz + Dge Dy pigy + Dye 1Dy 6) to introduce interpolation matricéd . Instead of.ay (fiya ), We
" pye + Dzet Dy pryy + Dzl Dy | introduceMg M jigy (Mg M3 p1y2). M, must have the corre-

sponding form for Neumann boundary conditions &mfl, M,
D; 5 are abbreviations fo#/3z, 5. The coordinates, 7, z are  must have the form corresponding to the Dirichlet boundary
normalized with the free-space wavenumbg(e.g.,.z = koz). condition with extrapolation terms. The same has to be done
The magnetic-field components are normalized with the fredr ¢,,, ande,,., but without extrapolation. The result of this in-
space wave impedanag(ﬁ] = noH). We have replaced the vestigation is that the difference operators are the same as in
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r T electric wal R — . the difference operators (matricéd}* andD;’*, respectively,
R PRt eestetcost e os e P oE.c.e, divided by the normalized discretization distanégs= koh..

o B DOLSlYIIiEs Mk andh, = koh,, which is indicated by a bar overandy. The
Sheoeoeo joresordll  cE,eg e, collection of the difference operators [marked by a hat ()g.,
Seosoto fowof o Hy Mo, can be constructed as described in the following. In case of an

of [Frecels owb]  C"Eieg inhomogeneous cross section (but without metallic subsections

oo on b T Bk in it), the difference operators can be given by Kronecker prod-
4w ucts of the difference operators for the ro(d3;*) or columns
' l (D;*) and identity matrices of the order of the number of rows

, \ , or columns. Accordingly, we have [1]

f | \ '|
@ @ "o DO _ o o pos
Fig. 2. Cross section of a general planar structure with discretization points. R gf. * Y

D, =D;*olI;* (12)
isotropic case. We have only to use interpolation matrices Wityore r

: - ) 2 and I»* are identity matrices of the ordev;-*
extrapolation terms. For the sake of brevity, the further discugsq aro.e respectively. The difference operatd?&® andD°®
sions are restricted to the casg, = v, = 0. v Y

have to fulfill Dirichlet or Neumann boundary conditions, re-
spectively, in case of magnetic walls. In case of electric walls,
the conditions have to be changed. Electric and magnetic walls
1) Basic Principle of Discretization:The fields and field have to be placed on different positions (cf. Fig. 2). If absorbing
equations will now be discretized. Discretized quantities afﬁ)undary conditions (ABCS) are necessatry, they have to be in-
represented by boldface letters. Fig. 2 shows the cross secti@jgjuced instead of magnetic walls. To be more flexible with re-
of a planar waveguide with the adequate discretization poingpect to the cross section, nonequidistant discretization can also
The field components are discretized at different points to ofe used following the hints given in [1].
tain efficient formulas describing the coupling between them. 2) Matrix Reduction: In case of metallic subsections (as in
E.(E,)is determined at the same pointsAg(H..) (cf. Fig. 2).  Fig. 2), the discretized quantities have to be reduced. The re-
These components are required to determinezthemponent quction of difference operators was reported in [14]. Here, the
of the Poynting vector in the direction of wave propagation. Theduction of the field vectors will be shown. The cross section
discretized field components are then collected in column veghould be divided with lines in vertical and horizontal direc-
tors. We order these components starting with the left-hand-sigghs according to the metallization boundaries. In Fig. 2, we
upper point going downwards along the first column. After thgyys obtain in both directions three different subregions. First,
last point in the first column, we continue with the highest poife assume those that have discretization points inside and on
in the second column, and so on [1]. Thus, the columns from thgs surface of the metal. However, we would not like to use
left- to right-hand side are put below each other. Tthecolumn  the discretized components on these points in our calculation.
vector may be represented by a subseriptg..E,;. The vector Therefore, we reduce the total number of discretization points
containing the collection of all these column vectors is markeg that outside the metal. Let us assume that, in our example,

D. Discretization of the Field and Field Equations

by a hat (i.e.;) as follows: the numberN? of o columns consists a2, N2,, and N2,
. P L columns in the three subregions 1-3 in thdirection, respec-
E, = |:Ea:17Ea:27 . '7Ea:Nn?:| . (11) tively. Analogously, the numbeN¢ of o rows in they-direc-

. . o _ . tionconsists ofVy,, Ng,. and Vg, rows in the three subregions
If we have Ny columns of v” discretization points arld\fy in they-direction. Let us define identity matricd§, , 1%, 125,
points in each column, the total number of pointsVisV;. In I°,,I%,, and IS, of the orderN2,, N2, ..., respectively. The

. . . xl»
case of.|dea| F“et?" in the cross section, the number of the fl vector F'; of the field quantityf” discretized ab points can
cretization points in the metal area must be subtracted. If the

metal is not ideal, it is considered as a dielectric with a compl W be reduced to the vectBf’ with components only outside

permittivity. The number of 8" columns and rows should be e metal by

N2 and]\_f;z respectively. Th_e values of the permittiviti_es and sz‘jf (13)

permeabilities are collected in the same order as the field com-

ponents, not in column vectors, but in the main diagonal ofvehere the matrix/?, is obtained from the matrix

diagonal matrix. All components of the tensor are discretized

on different permittivity or permeability points. Therefore, we Lol = diag(lil’liwliiﬁ) ® diag(IZMIZ?’IZ?:)

have three different permittivity and permeability matrices, re- (14)

spectively. Fig. 2 shows, for example, thkat andy,., are dis-

cretized on the same points Bg andH,, respectively. Even as

in case of isotropic materials, we need three different matrices I, © IZ

for these parameters. Hence, there is no essential difference bEJt _ ° e [I;l

; ; ; ; ; ; o = z2

tween the algorithms for isotropic and anisotropic materials. .
The differential operators are replaced by central differences. I;® I;

These central differences in the rows or columns are collected in (15)
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In the middle expression, we have discarded those row§,in are obtained likewise. Combining (19), we obtain for the wave
which are also rows id,. The matrices/;, J{,, andJ;, can equations
likewise be constructed. Now the reduced difference operators

2
can be obtained in the following way (see also [14]): dd‘2 H- QHH =0
A
° — JtD° dZ . NS
D, =JoD 7 SE- O"E=0 (23)
D, =JtD,J. i
o . where
D, =7 Dy o
~® t ' = —R R
D, =JtD; J,. (16) CgE— R Ry
Q =-RyRg (24)

We also have to reduce the diagonal matrices for the material
parameters. This will be done according to and the submatrices afe., = v, = 0)

. t s He -
& = JiCnsdo E = y 1pt 6y+p’mD I& le — &lt,,
~ _ qto ~ ~ ot
& = Jolyysde £ :D; _lD #€x — Il’acD. IA"_]L ¥
%Z:JtAkka E ~ Ot _1 AOtA_lAO

21 :Di D; g€y — B, Dy i, D

ﬁ’ac Jt Il’acacf‘].
ﬁ’J Je ”’JJfJ
It"z = JLI*"zszQ'

Q5 =D;

(17)  where we have taken into account thaD}’ = Dj and

o = . Without ABCs and for blaX|aI anlsotropy,
the matrlcesR are symmetric and the tw@ matrices are
transposed to each other as follows:

&1 D%, + i, Dy Dy — e (25)

3) Discretized Wave Equationdwith the supervectors of
the discretized field components

- ot ot t 2 St

BE— [EJET} Ry =Ry,

N Wt . ot

H= [—H;, HZ} (18) Qu =Qp. (26)

4) Eigenvalue and Modal MatricesTransforming the fields

discretized (4) take the form .
according to

d A A N A ~
7= —JReE H=TyH
d A, A, I I = 7 E
Lh= Ry (19) E=TgE @7)
A
Equation (23) reduce to
where
t t d2 H 0
o [e- DDt DY D
RE _ [(:y o /.\7:_11 . T ) .7:}"(’; A_lyA . (20) d722 H
Dot Do G Dol Tt 28)
7 Aac — D, ez_ D, My Az_ D; i
Ry = |Fr oS U sotipe [ @i
—Uz €, Ujy Il'y—D.i:fz D;
a—l A ~
In case of gyrotropic (gyromagnetic or gyroelectric) materials, Ty QuTy =T%
the terms Withezy , €y Hays fyz must elso be introdu_ced (see T;QETE =1%
Section 1I-C). ABCs can be realized in these equations by the 2 —r2 — 2 (29)

following replacements:
Due to (24), we obtain from both eigenvalue problems in (29)

D, —D; = (D;a ® IZ)red identical diagonal matrices of propagation const@itts~or the
DY D= (DY o) solution, concepts known from other methods should be used.
T T T Y/ red Th H ;
ot ot o o e general relation between the eigenvector (or moggll) ma-
D, — D, = (DYl )red tricesT g andT g of Q andQy, respectively, igI'? = —3)
D, —-D) =—(Der) (22)

A ~A—1
Trp=RyTyp
A ~—1
Ty = RgTrp (30)

O.(l

whereD;%, = D3 . The operatord:’; correspond tdz’
(for details of ABCs in the MoL, see [16]). Equation (19) is

completely analogous to the well-known equations for coupledhich is known from the theory of matrices. Generally, the am-
multiconductor transmission lines [4]. Therefore, their solutionditudes of the eigenvectors are free, therefore, we have intro-
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duced the (diagonal) matrifﬂ_1 for normalization. The trans-
formation of (19) results in

H= —jjE. (31)

[ll. | MPEDANCE/ADMITTANCE TRANSFORMATION
Fig. 3. Concatenation of planar waveguides 1 and 2 with different cross

A. Transformation Through Waveguide Sections sections.

From the general solution of (28f‘ = f}, f{) . .
For the inversion only, the signs f@randY need to be changed.

F=F;+F,=c""A+"B (32)  Defining admittances/impedances according to
we obtain for the fields in two plane$ and_B of a longitudinal i —YV. F
homogeneous section whose distancé&(iE= kod) BTl ABTAR
. . Esp=ZapHasp (41)
d|Fy ¥ &||F, _ _ _ :
1z f‘B T l-a 4 f‘B (33) results in the admittance/impedance transformation formulas
~ - - - 5 Jay fal s < -1 =
a = IA‘/ sinh (I:CZ) Ya=% — ¥ (?71 + YB) Yo (42)
4 =T'/tanh (I'd). (34) N A NS
Za=wn-2(h+Zs) % (43)

Using the first part of the general solution in (32), (the forward
propagating fields';), we can define wave impedance/admit-
tance matrices B. Waveguide Discontinuities

If waveguide sections with different cross sections are con-
= catenated, the tangential fields in the common cross section have
Yo=1I (39) to be matched. This matching process will be explained on the

This simple result is a consequence of the field normalizati§i@mple shown in Fig. 3, where two waveguides with different
using the two modal matricé; andT’;. Introducing (31) into  C0SS sections are concatenated. The matching process must be

(33) results in performed in thg original domain in which the fields are giv_en
by (27). To obtain parts of the supervectors, the modal matrices

Zo=1

ﬁQA o ]?A (36) must be partitioned. In a first step, the matriggsandl’y may
_Hjp ¥y | |Eg be partitioned according to
Balo |2 22 (37) = | TP
B 2 Zl _HB TE::.
where - | Ty,
o i - (1] "
¥, = Yo/tanh (I'd)
¥, = —f/o/sinh (I‘@ whgre the number of rows in the parts is equal to the_ number
R o . of field component®, andE, andH,, andH,, respectively.
21 = ?O/tanh (I'd) The vectors of the field components in the original domain are
%2 = Zo/sinh (I'd). (38) obtained from the vectors in the transformed domain by the fol-
lowing relations:
Furthermore, we also need the transfer matrix relations, which .
are given by E,=TgE
2~ 2 2~ £ I:I = —T ﬁ
Eal |V Z||Es 39) T (@)
Hy Y V||Hp The matrices's, , Tr,, Tw, , T, may be further partitioned
where according to the columns of the discretization points in the cross

X section (see Fig. 2). If we have, for examp?é$ columns ofo

V = cosh (I‘cZ) discretization points then we may, for example, partition,

5 5 . . in Ny submatrices, where the number of rows in each of the
? - ?O sinh (I‘J) submatrices is equal to the number of thdiscretization points

Y = Yosinh (I'd). (40) in that column. Denoting theth submatrix ofl' ¢, for thenth
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columnby?’g_ , then the subvector of the field componeBts
in thenth “o” column is given by

E,,=Tg, B ne{l,N}. (46)

xn

In an analogous way, the other field components can be calc z,

lated in their columns. . _ _
In case of planar structures and two-dimensional discretiZag 4 Junction of three waveguides:at= =o.
tion, the field matching and impedance transformation at dis-
continuities should also be described by a matrix partition wif- Impedance Transformation at Waveguide Junctions

the help of suitable/ matrices. The matching of the tangential |n this subsection, we would like to demonstrate how wave-

electric field results in guide junctions, as in Fig. 4, i.e., with a common cross section,
o . can be modeled. The algorithm to be developed is suitable for
J TpE, =0 (47) the analysis of microstrip-to-rectangular waveguide transition
j‘iTElﬁyl — f];TEQﬁ;Q (48) proposed in [13]. At the common cross section of the waveg-
0= 7" T b (49) ui_des (at = zo),_the field relation i_n regions |-Ill can be written
2 - E252 with the help of impedance matrices as follows:
The matrices?i(f]é) reduce the fieldl’z, E; in the original E ZI f{I
domain to that part common to the field of waveguide 2 (1) and N S - fH A .
can be calculated from th&, , matrices in Section II-C.2 by E;=-ZzH,
~ 11T ~ IIT ~ III
Jy=diag(J} a1, J45d01) Ec =ZcHc . (58)
Jy=diag(Jt Jes, JE 1 J02). (50) For the matching procedure, we must split the tangential elec-

tric and magnetic fields in waveguidél considering the dif-
J; TE;LE]L(J2 TEQEQ) is the field part of the metallic front end ferent parts of the cross sectiod,(B, and M in Fig. 4). We

of waveguide 2 (1). From (47) and (48), we obtain obtain
. nc ) . T T I
. _ 1 J2TE2 £ 15t 5C 2 . ~A ATTTA ~C
b= [P | B =17 ik o1 B = | B | = | Jun BY (59)
ix wi . L ER JursEE
The matrix with the zero rows has to be understood symboli- CE T a0
cally, because these zeros are placed between the rows in the I — ﬂﬁr — | Jor, FIIT (60)
upper submatrix. Analogously we obtain from (48) and (49) T M| T M
L Hy JmsHg

2 ~ct ~c
Ex = J2 J TElEl (52) The subvectok,; represents the electric field on the nonideal
metallic end between regiont and B. In case of ideal metal,
E,; is a vector with zero components. Agaihare reduction
o R < S R matrices. With these matrices, the fie_ld compon_entsAon special
LT LR T2 2T lines are selected and related to the different regions Jgy
= Jy oY 2 Eo (53) selects the lines in regidiiI, which end at the metal/. With
— j;THQ?QT}_gé j‘; jiTElﬁl- (54) allthese matripes? for a wayeguide Cross sectio!ﬂ—in our case,
Jira, B, m—a identity matrix can be formed. This procedure is

The last equation may be rewritten and combined with (4@fiuivalentto the matrix partition technique proposed in [10] and

Matching the magnetic field, we obtain

yielding (11].
Matching the tangential electric field using the vectors in the
¥° ~C = iact\" L e 2~ : :
:]m TFlEl (JQTH2Y2TE§J2 ) JlTH1H1‘| . transformed domain, we obtain
' 0 LI JuaTmr | | TiE4
(55) TwEc = | JuivTm | Ec = | Ey |- (61)
JursT ThHEp

Using a procedure analogous to (51), we obtain

~ IIT o o ~
~ 1nct [ac o aet\ Tl oac ~ The vectorE. is a function ofE 4, Eg, E; and is, therefore,
Ey = Tpt0] (DT oTghdy ) ITm e (56) given as

Therefore, the impedance is given by o JmATTEA

~ et [ac 2 act\ Tl Ec = TﬁI JHIMEM (62)
71 =TE; (JQTHQYQTEQJQ ) ITw.  (57) 3 Ty
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which can be written in the following form:

L TIT
E. =Tp; J IHATIEA + Ty J IIIBTHEB + Ty Iy v Ear

(63)

Analogously, matching the tangential magnetic field, we obtain
in the transformed domain the equations

A .\ ~ I
~ III 'JIHATIH ~ IIT I:IA TIHA
TwHe = | JumTuw [ He = | Sy | = SMII
JusTm Hg TuH, _ o
(64) Fig. 5. Sharp microstrip bend of bend angle

First we consider the case of ideal material with; = 0.
In this case, the last equation in system (70) decouples from the
first one. Now with respect to (58), we obtain from the second
equation in the system (70)

WhereSM is the current density on the metallic end between
regionsA and B, i.e., located on the same places&ﬁ. The
following three equations result from this array:

~ IIT

TIIAIS JHIATHIIA{ICH (65) Ep = - (}{BB —Y5) 'ypaEa
TyHp = JuupTuHe (66) Ys=2g (72)
. TIT
Sy = JmMTch (67)

which may be introduced into the first equation in (70)

The associated equations for tangential electric-field vectors

= = =) A~ A~ ~ S -1 N =y ~ o
E4 andEg are obtained using (58) Hy= <yAA —YaB (@BB - YB) yBA>EA =Y E4.
~1 ~ 1 ~  ~IIT (73)
E,=Z2,T Jm ATIHYcEc (68)
ﬁ)g _ ZBTH JIIIBTIIIYCEC (69) The admittancd” 4 is, therefore, given by
A _ 2 S ~ o~ o~ > 713
ReplacingH¢ in (65)—(67) by¥ - Ec and introducing (63) into Ya=9ys4a—Yan (ym; - Y,;) Yna (74)

these equations, we obtain
which has the same form as (42) and (43).

H, Yar Yap Yau E. In case of a nonideal metal wall, the approximate boundary
_Hg | = | ¥4 Yz Usm | | Eg (70) conditions for_the tangential fields on the metallic surface
S Yvua Yus Yum] LEy i Hy = €. x E, can be used. Assuming waveguide | is excited

by the fundamental mode, then the fiddd is known. Using it
and the admittanck¥ 4, we can calculate the fieldd 4, andE g

by (73) and (72), respectively. The other quantities, including
the surface current densi$s,, can then be determined by (70).

where the submatrices are given with the abbreviations

Yo = TIII?CTT_I%
YCM = ch ;II]W
Yea =Yl
Yep = chim;Tn

D. Microstrip Sharp Bends

In this subsection, we would like to analyze sharp microstrip
bends (see Fig. 5) by using the algorithm developed before and
discretization lines of different lengths. Since the propagation
direction changes froms to 2/, we must restrict the compo-
nents in the diagonal anisotropic material tensonsg,.to— v. .,

by

f = TflijYCA

Yaa whereas,,, can be different from these values.

Yip = T;lJHIAYCB The tangential fields in the tilted plarie are given by

Ypa = T JusY ca R

Jnn = T Ty, B = [ . v } (75)

Ysp = I ST en ELT cos(a/2) + EM T sin(a/2)

Yan =11 JIEIAYCA'M Ao HLT cos(a/2) +£ H D sin(a/2) (76)
Ypu = —Ti' JusY cu t HLI :

Ynra = JumYea The waveguide parts of the bend are labeled | and II. There-

Yup =JmmYcn

Yarar = JuY om- (71)

fore, we user andx in waveguide Il (instead af’ and:’). The
components in the propagation directions are obtained from (7),
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which have to be discretized. Matching the tangential electidue to different line length, we have
and magnetic fields in plang, we obtain(t, = tan(«/2))

‘A,E7H = TE,H e cosh (élI")

EL ] [o o H—(ﬂ;Jrﬂg)] A
ol - H - me Zar;'z i antl ZE = TE ® Sillh (ElI")Z
Eac Eac ] L Y Hy + Hy ) AO
] (77) Vi =T esinh(dr” )Y,
o1l I % LRIl
—I?Ix _ IQII{Hm = ng 5 ]?Iy + ]?% (78) R ~ ¢ - 1k
v v ]| EL + E! d= <Jﬁ (d' ®I;)) , <Jg (d° ® Ig)) . (86)
where we defined impedance and admittance matrices ac-
cording to The multiplication sign " denotes that the matrices have to
be multiplied element by element (array multiplication). Col-
Zow IjtaMS;GZZlD; lecting all d; (see Fig. 5) in a column vector, we obtain the
ZW i Muc—li)cf column vectord. .Iyﬁ is a.column vectqr of ordgNy7 V\ih.OSE'
) o elements are units. Matrice§ , are defined as in (11" is a
Y,y =jta quu D row vector containing the diagonal element¥ofherefore, the
Yo = —jta MTHM D (79) productdI'” is a full matrix. To obtain numerically more stable

impedance transformation formulas, we determineztheatrix

We have introduced interpolation matric$;° between the parameters by
discretization line systems. The combination of the above equa-

tions yields the following matching relation: 2= 222 =VrYy, 1
EI EH Z{IQ = 221 = VFJYHIVH — ZE‘
~1 ~ 1T P = —
Pp| of | = HH] (80) Zy=21 =Yy Vuy
§ =2 =Yy (87)
Wlth . . . . .
The tilde in these parameters indicates that they connect fields
Ir in the transform domain on one side and fields in the original
LI I FZ,. ¥Z., domain on the other side of the section. With these matrices,
P T3y, TY it - (81) the inputimpedances in pladg” of section Il and planet! of
Y rxT .
7 section | can be calculated by
i i i S I (- SN\ L
Therefore, t_he transfer matrix relation between both sides of Zp = 21111 _ z1112 (z1212 + Zo) ngl (88)
planeE is given by .
AT N ATT
. "B AR Za =21 — (Z22 + ZE) % (89)
:E}IE _ (PI )7 PH EH _ VE ZE :E)IEI‘
HL E HII ~E A B HU . L.
E E Yy Vg E In (95), we have introduced the characteristic impedance of the

(82) infinitely long waveguide Il as a load impedance at pBft

From the input impedancﬁT4 and the source mode, the re-
Defining meedances on both sides of planE by flected mode and fields can be calculated. Transforming the

BN = HEH, the impedance transformation frontfields in opposite direction results in the fields at pst and
sides Il to | y|elds from those, the scattering paramesgy .
2y = (VEZE 1 ZE) (Yizg 1 ‘}5)_1 . (83) IV. ANALYSIS OF PLANAR JUNCTIONS

As an example for the analysis of waveguide junctions in
With the help of the transfer matrix relations in (39), we caplanar technology, we examine the waveguide crossing shown
write the original fields in plangZ as functions of the trans- in Fig. 6. The junction regiory is bounded by the four ports
formed fields in planeB = B! or A = Al respectively, as A-D. In general, waveguidé® 4 to W, are connected to these
follows: four ports. The connecting waveguides may also differ from the
waveguides inside the junction (see, e.g., wavegligg). In

ﬁ)% [VE ZE EB (84) Fig. 6(b), only the junction region is sketched. Between ports
H Yy Viul||Hjg AandB, we have three concatenated waveguide Sections I-IlI.
) ) " 2 The ports of these sections are markedyB! to AL BT,

]?IF _ Ve —Zg E,4 (85) Magnetic boundaries are chosen for the sidewalls of the con-
HY, ~Yu Vy H. necting waveguides. Therefore, we describe the relation of the
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~ IIT o
the field vectors at the subports and especiBlly = Eg. For

numerically stable calculations, we use the algorithms described
in [12]. FromE g, which is a function oH 4, the transmittance
matrix %ﬁgm is obtained. The analogous procedure holds for
the other two submatrices in (92). Noﬁ?jg is completely de-
termined. In an analogous way, the submaﬁrﬁg’g in (90) is
obtained. In this case, port$ and B must be open circuited
with H 4z = 0. We now have five different waveguide sections
concatenated between poffsand D (see Fig. 6).

(b)
Fig. 6. (a) Junction of planar waveguides. (b) Inner junction. B. Off-Diagonal Submatrices

) ) ) _ The off-diagonal submatrices describe the coupling between
field at. the_ inner side of the fqur generalized pasD by ihe ports. The matrifeég is defined by the equation
open-circuit matrix parameters in the form

ﬁ ~AB ~CD e ECD = ‘%ggﬁAB

LAB | _ lfﬁg félg] [I}AB] . (90) ~AB 2AB

Bep| ™ 3en 2ep] [ Hen - g e 3
Zcp21 RCD22

The fields at the opposite ports are combined in supervectors,

Hen which is obtained from (90) under the conditigfc:p = 0.

N At st ]! The submatrices on the left-hand (right-hand) side are obtained

Eap = {EA’EB} by settingHg = 0 (H4 = 0). We will now describe the pro-

) T cedure for the two submatrices on the left-hand side. The pro-

H,z = [HA, —HB} : (91) cedure for the right-hand side submatrices is analogous. Only
the electric-field components are responsible for the coupling

The four matrices in (90) are obtained by open circuiting tHEOmM portsA and B to portsC' and D. The magnetic field pro-
ports. By open circuiting port§' andD, the matriceéf:g ang duces only zero tangential magnetic-field .components at the
zég are obtained. By open circuiting portsand B, the ma- boundarieg” an_dl? (becausg of the magnetic walls). Thus, we
tricesC P ~CD have to determin&S-” andE®” caused byH 4. These cal-
iceszsp andz ;5 can be calculated. . Y # ) o
culations must be performed for the different subports. This is
A. Main Diagonal Submatrices because each of the podsand D must be partitioned in (in

. k . - _
First we would like to demonstrate the determination of the- - example, three) subports” and D* according to the side

two main diagonal submatrices in (90). Let us start vﬁﬁg walls areas of the waveguide sections. In each of the subports,

We assume that ports andD are open circuited, which meansthe calculations for the components have to be performed anal-

2 B . : . ogously to rectangular waveguide junctions described in [12].
Hep = 0. The field relation between ports and B is then 1, yoqjired field components at subpotfsand 5* were de-

given by termined in the previous subsection. From the tangential elec-
B = 5 H tric-field components at the subpot$, D*, which are propor-
Ap AR Ar tional toFL 4, the matriceg;: o, andz;:n,, are obtained. Inan
~AB z z 5 S CD .
Zap = | AR TARY (92) analogous way, the off-diagonal submatiy; has to be deter
Zapo1 ZaB22 mined.

To obtain these four submatrices, we again use the technique of

open circuiting the Borts. With 3 = 0, we obtain the subma- _ _
trices%igu and%imy %jgu is the input impedance matrix Numerical results compared with those of other methods

at the portA! for open portB. In our example, portst and B showed the accuracy of the proposed algorithm [19]. Further

are connected via a concatenation of three different Wavegurgecfu“fS compu_ted f_o,r special devices here are presented t(,) show
sections. For each of these sections, the tangential fields at {ffe Wide applicability of the proposed algorithm. Fig. 7 is a
ends of the ports are described by equations as (37). For m%t of the dispersion curves of a microstrip on anisotropic

transition between the waveguide sections, (57) holds. The ingifPstrate. The dashed lines were obtained by an algorithm
impedance of Section Il in Planﬂm is obtained from the for- with one-dimensional discretization [9]-[11]. These curves are
I

. AT 21 AT . the most accurate ones and can be used as a reference. The
mulain (43) as; . FromZ, =z,", we obtain with the help i, jines are from [2] with discretization lines in the vertical
of (37) and (57) aIIylmpedances at the subports. For the Calcu@)-direction. The thick lines were obtained using (29). By

tion of the matrixz’y g, , we must now proceed in the oppositg,sing a high number of discretization points, the thick lines are

direction. With the inputimpedancg, , i.e., (37), the matching very close to the dashed lines. At higher frequencies, the field
equations and the already calculated impedances, we obtainsalnore concentrated near the strip. Therefore, these curves

V. NUMERICAL RESULTS
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25 — - 0.4 I I T
fi = diag (112,122,135 (D — isotropic
24 | Lo 0608 - —- anisotropic
t — — o= B T 0ss (10.1,8.0, 10.1) i
_ — — ’ o misotropic °
as 53 mw - model 40/ /1
=~ | — 02 7/
@ fi, = diag (1.00, 1.00, 1.00) (2) 73 // /
2 §00
w 2.2
—_ pa o s Y
== 202/
2.1 — 2 . éﬁ‘—{“—z =
""10.5 0 5 10 15 20 25 30

g = dlalg (2.89, 2|‘45, 2.95]) frequency [GHZ]

2.0
0 4 8 12 16 20

frequency (GHz) —w Fig. 9. Scattering paramet¢f.| for a microstrip sharp bend. Substrate
thickness = 0.65 mm, w = 0.608 mm, — ¢, = 10.1,---¢7 =
Fig. 7. Dispersion curves of a microstrip on an anisotropic substrate. —: [#i2&(10.1,8.0,10.1), o from [17].
- - -1 [10], —: this algorithm.

|
. ﬁ
S 0.05 — ;
; 11 /WH/=W ///’ —‘é\\\ J:
ﬂ: // -== 3x30° \\\ ~— ;
gl WR51 w=w=0635mm ' A — 9x10° AN v
q—l T W T T 1 I P ‘ N // \(
R e S o P 0
z 9 g-_T o i = | 0 5 10 15 20 25 30
% 10 = = 165 — -~ frequency [GHz]
2 /,
E 1 S T wy=4w Fig. 10. Scattering parametg#,| for concatenated sharp microstrip bends
s - 11~ to form a 90 bend. Dimensions of the microstrip are as in Fig. 9.
= / /
o -12 — A ooy 14
B= Wu=ow =
g 3 // P ! —
§ i S ~
w2 11
-14 // r
15 ,/ 5
/ 5
16| * 2
16/ | §
1 2 3 4 5 6 7 8 g
frequency [GHz] ——m g
&
Fig. 8. Scattering parametelS,, | as function of frequency in a waveguide
junction (see Fig. 4).
converge toward the same values. This should also be true for 2 7 [=%=03.12329
the thin lines if the number of discretization lines is increased. - —E. =(20,26.23)

. . oy r— add oy e
Numerical results for the scattering parameters of a transition 0 | . T
microstrip/suspended substrate line in a rectangular waveguide 00 02 04 06 08 10
WR51 are given in Fig. 8. For the calculations, the formulas PL/T ——

of Section IlI-C were used. As can be seen, the reflections _ _ _ _ _
can be reduced by using a larger strip width in waveguide g:.?};srritt th?i‘:lii'ozr' 0.7‘:9“:1’?“5’ " Srz_Sfmngro:Stg%. meander line.
Fig. 9 shows numerical results for the reflection coefficient of a

microstrip sharp bend as a function of frequency parameterizserg

with the bend angle. In case of the dashed lines, the substrala " - The dashed curve is from [20]. The full thick line was
i angie. in f gb?ained with the algorithm described here. The thin line is
has anisotropic behavior. The results marked by aere

obtained by a magnetic-wall model and one-dimension@r an anisotropic substrate. The arithmetic mean value of the

discretization [17]. A 99 bend constructed by concatenatiof ermittivities is equal to that of the isotropic case.
of sharp bends of smaller angles was analyzed (see Fig. 10).
As can be seen, in this way, 98ends can be constructed with

a total reflection coefficient smaller than 0.05 in the whole A new algorithm based on GTL equations and impedance/ad-

frequency range. For the analysis of microstrip meander lingsittance transformations has been presented for the analysis of
Floquet’s theorem was introduced into the difference operatocemplex planar microwave circuits on anisotropic substrates.

In Fig. 11, dispersion curves for a microstrip meander line afidhe algorithm has been verified by numerical results.

VI. CONCLUSION
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