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Abstract—A new algorithm for the analysis of planar microwave
structures with anisotropic substrates is proposed and substan-
tiated. This algorithm is based on generalized transmission-line
(GTL) equations, which are developed here for numerical algo-
rithms. For the purpose of analysis, two different modal matrices
for the discretized transverse electric and magnetic fields are cal-
culated. Furthermore, impedance/admittance transformation for-
mulas are developed with the help of the GTL equations for longi-
tudinal sections and general junctions. Crossed discretization lines
are used in the latter case. The materials are assumed to be biaxial
or specific anisotropic. Special algorithms are developed for junc-
tions consisting of more than two waveguides in the cross section
and for bends. The proposed algorithm is verified by numerical re-
sults.

Index Terms—Anisotropic materials, generalized transmission-
line equations, impedance/admittance transformation, method of
lines, microstrip junctions.

I. INTRODUCTION

ONLY IN special cases do microwave and millimeter-wave
devices such as integrated circuits have a simple form.

Examples of complex planar circuits are shown in Fig. 1. The
first one is a microstrip band-stop filter. This special structure
contains various propagation paths from input to output and
allows the formation of phase or group delay characteristics.
The second shows a bandpass filter in coplanar-line technology
featuring big differences in the dimensions. The distances of
the two parts of the inner line are very small compared to the
length. The proposed algorithm is very suitable for this struc-
ture because the longitudinal direction is determined analyti-
cally, whereas the cross section can be described optimally by
a nonequidistant discretization scheme. As a last example, the
sketch of a microstrip meander line is shown. Meander lines are
especially useful as group delay equalizers or as delay elements.
Here also are big differences in the dimensions. Furthermore,
many lines are coupled with each other. In general, not only do
the metallizations have a complex form, but also the substrates
may be multilayered and the materials may have biaxial or spe-
cific anisotropic properties.

The analysis of microstrip discontinuities with bianisotropic
substrates using the method of lines (MoL) [1], with discretiza-
tion lines perpendicular to the surface, is given in [2]. Since the
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Fig. 1. Planar microwave circuits. (a) Band-stop filter. (b) Coplanar-line filter.
(c) Meander line.

discretization is in the propagation direction, the algorithm is
not suitable and adequate for devices consisting of many con-
catenated waveguide sections.

In general, microwave circuits can be described as concate-
nations of longitudinally homogeneous waveguide segments
and junction regions. This paper aims at presenting an analysis
algorithm adequate for the above-mentioned structures on
anisotropic substrates. To describe the field propagation along
the waveguide segments, generalized transmission-line (GTL)
equations [3] for the transverse electric and magnetic fields
are developed here in a special form best suited for numerical
algorithms. These equations are analogous to the well-known
transmission-line equations for coupled transmission lines in
inhomogeneous media [4].

The GTL equations allow the normalization of the fields
by using two modal matrices for the transverse electric and
magnetic fields. Generally, the analysis is based on impedance/
admittance transformations from the loads to the input. These
transformation equations are obtained with the help of the GTL
equations. The fields can be calculated in opposite direction
starting at the input and proceeding to the load. This is a
numerically stable algorithm. The relation between the fields
at the ends of the longitudinal sections is described by a trans-
formation of relevant impedance/admittance matrices. At the
concatenations of different waveguide sections, the matching
process of the fields is also performed by an impedance/admit-
tance transformation. Waveguide junctions are analyzed with
crossed discretization lines. The relations between the fields
at the ports are described by open-circuit matrix parameters
(short-circuit matrix parameters are also useful in some cases).
Therefore, it is possible to transform again the load impedances
to the input port to which the source is connected.

Algorithms based on GTL equations and in other coordi-
nate systems have also been developed for the analysis of cir-
cuits in integrated optics [5], optical fiber structures [6], and
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conformal antennas [7]. Eigenmode solvers for double-layered
anisotropic substrates have been reported in [8] and for multi-
layered anisotropic waveguides by the author in [9]–[11].

The proposed algorithm will be substantiated by numerical
results.

II. BASIC THEORY

In this section, we derive the GTL equations that are analo-
gous to the well-known equations for coupled multiconductor
transmission lines in inhomogeneous media [4] as follows:

(1)

These equations are solved by calculating modal matrices [4],
which we would also like to determine here.

A. Material Properties

For the formulation of GTL equations, the material parame-
ters are assumed of the following form:

with or (2)

The propagation takes place in the-direction. The device under
study is divided into homogeneous sections in the direction of
propagation. Hence, the material parameters in the cross sec-
tions are functions of and only.

B. GTL Equations

GTL equations can be derived in general orthogonal coordi-
nate system [7]. Here, we will describe the Cartesian case. Using
the abbreviations

(3)

we obtain induction of the expressions

(4)

from Ampere’s law and the law with

(5)

(6)

are abbreviations for . The coordinates are
normalized with the free-space wavenumber(e.g., ).
The magnetic-field components are normalized with the free-
space wave impedance . We have replaced the

field components and using the remaining equations of
law of induction and Ampere’s law, respectively, as follows:

(7)

Combining (4), we obtain

(8)

where . Alternatively, we can write a wave
equation for . The relation between these two wave equations
will be discussed later.

C. Boundary Conditions

We will demonstrate the fulfilment of boundary conditions for
the case of electric walls. The case of magnetic walls will be dual.
At electric walls, the tangential electric-field components must
be zero. Therefore, we have to first fulfill the conditions
and at a metallic wall and ,
respectively. This means that in for (4a), the differential
(difference) operators and on the right-hand sides in the
submatrices have to be chosen for Dirchlet boundary conditions.
The difference operators on the left-hand sides in the subma-
trices have to be chosen for Neumann boundary conditions. Now,

and are also fulfilled at the same walls,
respectively. Therefore, by rewriting (4b), at these walls we have

(9)

(10)

The first term in brackets on the right-hand sides of (9) and (10)
is proportional to [see (7b)], which has to be zero at the
metallic walls. Therefore, the differential (difference) operators
on the left-hand sides of the brackets and , respectively,
have to be constructed for Dirichlet boundary condition. Ac-
cording to the discretization scheme, the differential (difference)
operators and in the expressions of the first brackets have
the form for Neumann boundary condition. Since we have ful-
filled the condition , the terms in the second brackets

and also will then be zero at
the corresponding walls. Therefore, we have fulfilled the condi-
tions at the wall
Since and will be discretized at different points, we have
to introduce interpolation matrices . Instead of , we
introduce . must have the corre-
sponding form for Neumann boundary conditions and
must have the form corresponding to the Dirichlet boundary
condition with extrapolation terms. The same has to be done
for and , but without extrapolation. The result of this in-
vestigation is that the difference operators are the same as in
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Fig. 2. Cross section of a general planar structure with discretization points.

isotropic case. We have only to use interpolation matrices with
extrapolation terms. For the sake of brevity, the further discus-
sions are restricted to the case .

D. Discretization of the Field and Field Equations

1) Basic Principle of Discretization:The fields and field
equations will now be discretized. Discretized quantities are
represented by boldface letters. Fig. 2 shows the cross section
of a planar waveguide with the adequate discretization points.
The field components are discretized at different points to ob-
tain efficient formulas describing the coupling between them.

is determined at the same points as (cf. Fig. 2).
These components are required to determine the-component
of the Poynting vector in the direction of wave propagation. The
discretized field components are then collected in column vec-
tors. We order these components starting with the left-hand-side
upper point going downwards along the first column. After the
last point in the first column, we continue with the highest point
in the second column, and so on [1]. Thus, the columns from the
left- to right-hand side are put below each other. Theth column
vector may be represented by a subscript, e.g., . The vector
containing the collection of all these column vectors is marked
by a hat (i.e.,) as follows:

(11)

If we have columns of “ ” discretization points and
points in each column, the total number of points is . In
case of ideal metal in the cross section, the number of the dis-
cretization points in the metal area must be subtracted. If the
metal is not ideal, it is considered as a dielectric with a complex
permittivity. The number of “” columns and rows should be

and , respectively. The values of the permittivities and
permeabilities are collected in the same order as the field com-
ponents, not in column vectors, but in the main diagonal of a
diagonal matrix. All components of the tensor are discretized
on different permittivity or permeability points. Therefore, we
have three different permittivity and permeability matrices, re-
spectively. Fig. 2 shows, for example, that and are dis-
cretized on the same points as and , respectively. Even
in case of isotropic materials, we need three different matrices
for these parameters. Hence, there is no essential difference be-
tween the algorithms for isotropic and anisotropic materials.

The differential operators are replaced by central differences.
These central differences in the rows or columns are collected in

the difference operators (matrices) and , respectively,
divided by the normalized discretization distances
and , which is indicated by a bar overand . The
collection of the difference operators [marked by a hat (i.e.,)]
can be constructed as described in the following. In case of an
inhomogeneous cross section (but without metallic subsections
in it), the difference operators can be given by Kronecker prod-
ucts of the difference operators for the rows or columns

and identity matrices of the order of the number of rows
or columns. Accordingly, we have [1]

(12)

where and are identity matrices of the order
and , respectively. The difference operators and
have to fulfill Dirichlet or Neumann boundary conditions, re-
spectively, in case of magnetic walls. In case of electric walls,
the conditions have to be changed. Electric and magnetic walls
have to be placed on different positions (cf. Fig. 2). If absorbing
boundary conditions (ABCs) are necessary, they have to be in-
troduced instead of magnetic walls. To be more flexible with re-
spect to the cross section, nonequidistant discretization can also
be used following the hints given in [1].

2) Matrix Reduction: In case of metallic subsections (as in
Fig. 2), the discretized quantities have to be reduced. The re-
duction of difference operators was reported in [14]. Here, the
reduction of the field vectors will be shown. The cross section
should be divided with lines in vertical and horizontal direc-
tions according to the metallization boundaries. In Fig. 2, we
thus obtain in both directions three different subregions. First,
we assume those that have discretization points inside and on
the surface of the metal. However, we would not like to use
the discretized components on these points in our calculation.
Therefore, we reduce the total number of discretization points
to that outside the metal. Let us assume that, in our example,
the number of columns consists of and
columns in the three subregions 1–3 in the-direction, respec-
tively. Analogously, the number of rows in the -direc-
tion consists of and rows in the three subregions
in the -direction. Let us define identity matrices

and of the order respectively. The
full vector of the field quantity discretized at points can
now be reduced to the vector with components only outside
the metal by

(13)

where the matrix is obtained from the matrix

(14)

as

(15)
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In the middle expression, we have discarded those rows in,
which are also rows in . The matrices and can
likewise be constructed. Now the reduced difference operators
can be obtained in the following way (see also [14]):

(16)

We also have to reduce the diagonal matrices for the material
parameters. This will be done according to

(17)

3) Discretized Wave Equations:With the supervectors of
the discretized field components

(18)

discretized (4) take the form

(19)

where

(20)

(21)

In case of gyrotropic (gyromagnetic or gyroelectric) materials,
the terms with must also be introduced (see
Section II-C). ABCs can be realized in these equations by the
following replacements:

(22)

where . The operators correspond to
(for details of ABCs in the MoL, see [16]). Equation (19) is
completely analogous to the well-known equations for coupled
multiconductor transmission lines [4]. Therefore, their solutions

are obtained likewise. Combining (19), we obtain for the wave
equations

(23)

where

(24)

and the submatrices are

(25)

where we have taken into account that and
. Without ABCs and for biaxial anisotropy,

the matrices are symmetric and the two matrices are
transposed to each other as follows:

(26)

4) Eigenvalue and Modal Matrices:Transforming the fields
according to

(27)

Equation (23) reduce to

(28)

with

(29)

Due to (24), we obtain from both eigenvalue problems in (29)
identical diagonal matrices of propagation constants. For the
solution, concepts known from other methods should be used.
The general relation between the eigenvector (or modal) ma-
trices and of and , respectively, is

(30)

which is known from the theory of matrices. Generally, the am-
plitudes of the eigenvectors are free, therefore, we have intro-
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duced the (diagonal) matrix for normalization. The trans-
formation of (19) results in

(31)

III. I MPEDANCE/ADMITTANCE TRANSFORMATION

A. Transformation Through Waveguide Sections

From the general solution of (28)

(32)

we obtain for the fields in two planes and of a longitudinal
homogeneous section whose distance is

(33)

(34)

Using the first part of the general solution in (32), (the forward
propagating fields ), we can define wave impedance/admit-
tance matrices

(35)

This simple result is a consequence of the field normalization
using the two modal matrices and . Introducing (31) into
(33) results in

(36)

(37)

where

(38)

Furthermore, we also need the transfer matrix relations, which
are given by

(39)

where

(40)

Fig. 3. Concatenation of planar waveguides 1 and 2 with different cross
sections.

For the inversion only, the signs forand need to be changed.
Defining admittances/impedances according to

(41)

results in the admittance/impedance transformation formulas

(42)

(43)

B. Waveguide Discontinuities

If waveguide sections with different cross sections are con-
catenated, the tangential fields in the common cross section have
to be matched. This matching process will be explained on the
example shown in Fig. 3, where two waveguides with different
cross sections are concatenated. The matching process must be
performed in the original domain in which the fields are given
by (27). To obtain parts of the supervectors, the modal matrices
must be partitioned. In a first step, the matricesand may
be partitioned according to

(44)

where the number of rows in the parts is equal to the number
of field components and and and , respectively.
The vectors of the field components in the original domain are
obtained from the vectors in the transformed domain by the fol-
lowing relations:

(45)

The matrices may be further partitioned
according to the columns of the discretization points in the cross
section (see Fig. 2). If we have, for example, columns of
discretization points then we may, for example, partition
in submatrices, where the number of rows in each of the
submatrices is equal to the number of thediscretization points
in that column. Denoting theth submatrix of for the th
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column by , then the subvector of the field components
in the th “ ” column is given by

(46)

In an analogous way, the other field components can be calcu-
lated in their columns.

In case of planar structures and two-dimensional discretiza-
tion, the field matching and impedance transformation at dis-
continuities should also be described by a matrix partition with
the help of suitable matrices. The matching of the tangential
electric field results in

(47)

(48)

(49)

The matrices reduce the field in the original
domain to that part common to the field of waveguide 2 (1) and
can be calculated from the matrices in Section II-C.2 by

(50)

is the field part of the metallic front end
of waveguide 2 (1). From (47) and (48), we obtain

(51)

The matrix with the zero rows has to be understood symboli-
cally, because these zeros are placed between the rows in the
upper submatrix. Analogously we obtain from (48) and (49)

(52)

Matching the magnetic field, we obtain

(53)

(54)

The last equation may be rewritten and combined with (47)
yielding

(55)

Using a procedure analogous to (51), we obtain

(56)

Therefore, the impedance is given by

(57)

Fig. 4. Junction of three waveguides atz = z .

C. Impedance Transformation at Waveguide Junctions

In this subsection, we would like to demonstrate how wave-
guide junctions, as in Fig. 4, i.e., with a common cross section,
can be modeled. The algorithm to be developed is suitable for
the analysis of microstrip-to-rectangular waveguide transition
proposed in [13]. At the common cross section of the waveg-
uides (at ), the field relation in regions I–III can be written
with the help of impedance matrices as follows:

(58)

For the matching procedure, we must split the tangential elec-
tric and magnetic fields in waveguide considering the dif-
ferent parts of the cross section (, , and in Fig. 4). We
obtain

(59)

(60)

The subvector represents the electric field on the nonideal
metallic end between regions and . In case of ideal metal,

is a vector with zero components. Again,are reduction
matrices. With these matrices, the field components on special
lines are selected and related to the different regions, e.g.,
selects the lines in region , which end at the metal . With
all these matrices, for a waveguide cross section—in our case,

—a identity matrix can be formed. This procedure is
equivalent to the matrix partition technique proposed in [10] and
[11].

Matching the tangential electric field using the vectors in the
transformed domain, we obtain

(61)

The vector is a function of and is, therefore,
given as

(62)
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which can be written in the following form:

(63)

Analogously, matching the tangential magnetic field, we obtain
in the transformed domain the equations

(64)

where is the current density on the metallic end between
regions and , i.e., located on the same places as . The
following three equations result from this array:

(65)

(66)

(67)

The associated equations for tangential electric-field vectors
and are obtained using (58)

(68)

(69)

Replacing in (65)–(67) by and introducing (63) into
these equations, we obtain

(70)

where the submatrices are given with the abbreviations

by

(71)

Fig. 5. Sharp microstrip bend of bend angle�.

First we consider the case of ideal material with .
In this case, the last equation in system (70) decouples from the
first one. Now with respect to (58), we obtain from the second
equation in the system (70)

(72)

which may be introduced into the first equation in (70)

(73)

The admittance is, therefore, given by

(74)

which has the same form as (42) and (43).
In case of a nonideal metal wall, the approximate boundary

conditions for the tangential fields on the metallic surface
can be used. Assuming waveguide I is excited

by the fundamental mode, then the field is known. Using it
and the admittance , we can calculate the fields and
by (73) and (72), respectively. The other quantities, including
the surface current density , can then be determined by (70).

D. Microstrip Sharp Bends

In this subsection, we would like to analyze sharp microstrip
bends (see Fig. 5) by using the algorithm developed before and
discretization lines of different lengths. Since the propagation
direction changes from to , we must restrict the compo-
nents in the diagonal anisotropic material tensors to ,
whereas can be different from these values.

The tangential fields in the tilted plane are given by

(75)

(76)

The waveguide parts of the bend are labeled I and II. There-
fore, we use and in waveguide II (instead of and ). The
components in the propagation directions are obtained from (7),
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which have to be discretized. Matching the tangential electric
and magnetic fields in plane, we obtain

(77)

(78)

where we defined impedance and admittance matrices ac-
cording to

(79)

We have introduced interpolation matrices between the
discretization line systems. The combination of the above equa-
tions yields the following matching relation:

(80)

with

(81)

Therefore, the transfer matrix relation between both sides of
plane is given by

(82)

Defining impedances on both sides of plane by

, the impedance transformation from
sides II to I yields

(83)

With the help of the transfer matrix relations in (39), we can
write the original fields in plane as functions of the trans-
formed fields in plane or , respectively, as
follows:

(84)

(85)

Due to different line length, we have

(86)

The multiplication sign “ ” denotes that the matrices have to
be multiplied element by element (array multiplication). Col-
lecting all (see Fig. 5) in a column vector, we obtain the
column vector . is a column vector of order whose
elements are units. Matrices are defined as in (11). is a
row vector containing the diagonal elements of. Therefore, the
product is a full matrix. To obtain numerically more stable
impedance transformation formulas, we determine the-matrix
parameters by

(87)

The tilde in these parameters indicates that they connect fields
in the transform domain on one side and fields in the original
domain on the other side of the section. With these matrices,
the input impedances in plane of section II and plane of
section I can be calculated by

(88)

(89)

In (95), we have introduced the characteristic impedance of the
infinitely long waveguide II as a load impedance at port.

From the input impedance and the source mode, the re-
flected mode and fields can be calculated. Transforming the
fields in opposite direction results in the fields at port and
from those, the scattering parameter .

IV. A NALYSIS OF PLANAR JUNCTIONS

As an example for the analysis of waveguide junctions in
planar technology, we examine the waveguide crossing shown
in Fig. 6. The junction region is bounded by the four ports

– . In general, waveguides to are connected to these
four ports. The connecting waveguides may also differ from the
waveguides inside the junction (see, e.g., waveguide). In
Fig. 6(b), only the junction region is sketched. Between ports

and , we have three concatenated waveguide Sections I–III.
The ports of these sections are marked by to .
Magnetic boundaries are chosen for the sidewalls of the con-
necting waveguides. Therefore, we describe the relation of the
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(a) (b)

Fig. 6. (a) Junction of planar waveguides. (b) Inner junction.

field at the inner side of the four generalized ports– by
open-circuit matrix parameters in the form

(90)

The fields at the opposite ports are combined in supervectors,
i.e.,

(91)

The four matrices in (90) are obtained by open circuiting the
ports. By open circuiting ports and , the matrices and

are obtained. By open circuiting portsand , the ma-
trices and can be calculated.

A. Main Diagonal Submatrices

First we would like to demonstrate the determination of the
two main diagonal submatrices in (90). Let us start with .
We assume that ports and are open circuited, which means

. The field relation between ports and is then
given by

(92)

To obtain these four submatrices, we again use the technique of
open circuiting the ports. With , we obtain the subma-
trices and . is the input impedance matrix
at the port for open port . In our example, ports and
are connected via a concatenation of three different waveguide
sections. For each of these sections, the tangential fields at the
ends of the ports are described by equations as (37). For the
transition between the waveguide sections, (57) holds. The input
impedance of Section III in plane is obtained from the for-

mula in (43) as . From , we obtain with the help
of (37) and (57) all impedances at the subports. For the calcula-
tion of the matrix , we must now proceed in the opposite

direction. With the input impedance , i.e., (37), the matching
equations and the already calculated impedances, we obtain all

the field vectors at the subports and especially . For
numerically stable calculations, we use the algorithms described
in [12]. From , which is a function of , the transmittance
matrix is obtained. The analogous procedure holds for
the other two submatrices in (92). Now, is completely de-
termined. In an analogous way, the submatrix in (90) is
obtained. In this case, ports and must be open circuited
with . We now have five different waveguide sections
concatenated between portsand (see Fig. 6).

B. Off-Diagonal Submatrices

The off-diagonal submatrices describe the coupling between
the ports. The matrix is defined by the equation

(93)

which is obtained from (90) under the condition .
The submatrices on the left-hand (right-hand) side are obtained
by setting . We will now describe the pro-
cedure for the two submatrices on the left-hand side. The pro-
cedure for the right-hand side submatrices is analogous. Only
the electric-field components are responsible for the coupling
from ports and to ports and . The magnetic field pro-
duces only zero tangential magnetic-field components at the
boundaries and (because of the magnetic walls). Thus, we
have to determine and caused by . These cal-
culations must be performed for the different subports. This is
because each of the portsand must be partitioned in (in
our example, three) subports and according to the side-
walls areas of the waveguide sections. In each of the subports,
the calculations for the components have to be performed anal-
ogously to rectangular waveguide junctions described in [12].
The required field components at subportsand were de-
termined in the previous subsection. From the tangential elec-
tric-field components at the subports , which are propor-
tional to , the matrices and are obtained. In an
analogous way, the off-diagonal submatrix has to be deter-
mined.

V. NUMERICAL RESULTS

Numerical results compared with those of other methods
showed the accuracy of the proposed algorithm [19]. Further
results computed for special devices here are presented to show
the wide applicability of the proposed algorithm. Fig. 7 is a
plot of the dispersion curves of a microstrip on anisotropic
substrate. The dashed lines were obtained by an algorithm
with one-dimensional discretization [9]–[11]. These curves are
the most accurate ones and can be used as a reference. The
thin lines are from [2] with discretization lines in the vertical

-direction. The thick lines were obtained using (29). By
using a high number of discretization points, the thick lines are
very close to the dashed lines. At higher frequencies, the field
is more concentrated near the strip. Therefore, these curves
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Fig. 7. Dispersion curves of a microstrip on an anisotropic substrate. —: [2],
- - -: [10], —: this algorithm.

Fig. 8. Scattering parametersjS j as function of frequency in a waveguide
junction (see Fig. 4).

converge toward the same values. This should also be true for
the thin lines if the number of discretization lines is increased.
Numerical results for the scattering parameters of a transition
microstrip/suspended substrate line in a rectangular waveguide
WR51 are given in Fig. 8. For the calculations, the formulas
of Section III-C were used. As can be seen, the reflections
can be reduced by using a larger strip width in waveguide II.
Fig. 9 shows numerical results for the reflection coefficient of a
microstrip sharp bend as a function of frequency parameterized
with the bend angle. In case of the dashed lines, the substrate
has anisotropic behavior. The results marked by awere
obtained by a magnetic-wall model and one-dimensional
discretization [17]. A 90 bend constructed by concatenation
of sharp bends of smaller angles was analyzed (see Fig. 10).
As can be seen, in this way, 90bends can be constructed with
a total reflection coefficient smaller than 0.05 in the whole
frequency range. For the analysis of microstrip meander lines,
Floquet’s theorem was introduced into the difference operators.
In Fig. 11, dispersion curves for a microstrip meander line are

Fig. 9. Scattering parameterjS j for a microstrip sharp bend. Substrate
thickness = 0:65 mm, w = 0:608 mm, —: " = 10:1; - - - � =
diag(10:1;8:0;10:1); � from [17].

Fig. 10. Scattering parameterjS j for concatenated sharp microstrip bends
to form a 90 bend. Dimensions of the microstrip are as in Fig. 9.

Fig. 11. Dispersion curves for a microstrip meander line.
Substrate thickness = 0:79 mm,w = 2:37 mm," = 2:3.

shown. The dashed curve is from [20]. The full thick line was
obtained with the algorithm described here. The thin line is
for an anisotropic substrate. The arithmetic mean value of the
permittivities is equal to that of the isotropic case.

VI. CONCLUSION

A new algorithm based on GTL equations and impedance/ad-
mittance transformations has been presented for the analysis of
complex planar microwave circuits on anisotropic substrates.
The algorithm has been verified by numerical results.
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